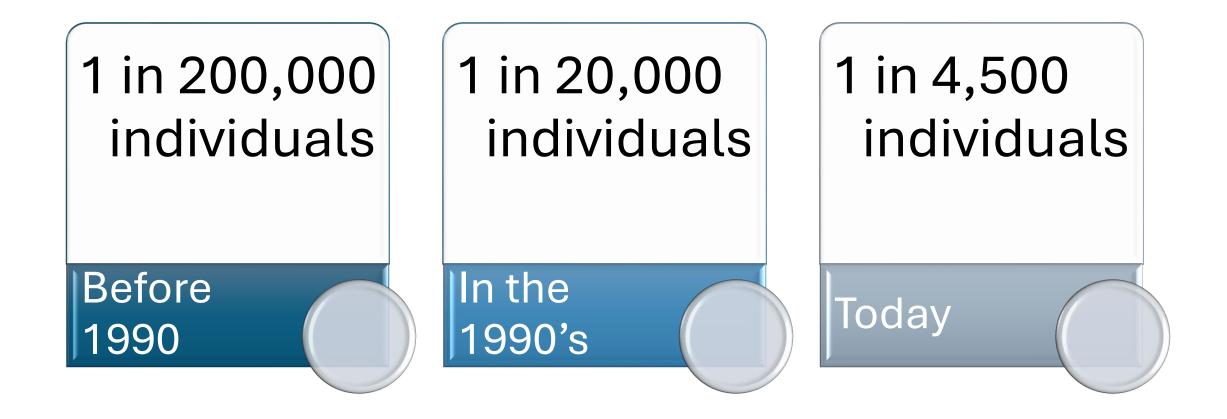

F A M C A N Familial & Hereditary Cancers Institute

TP53 related cancer syndromes

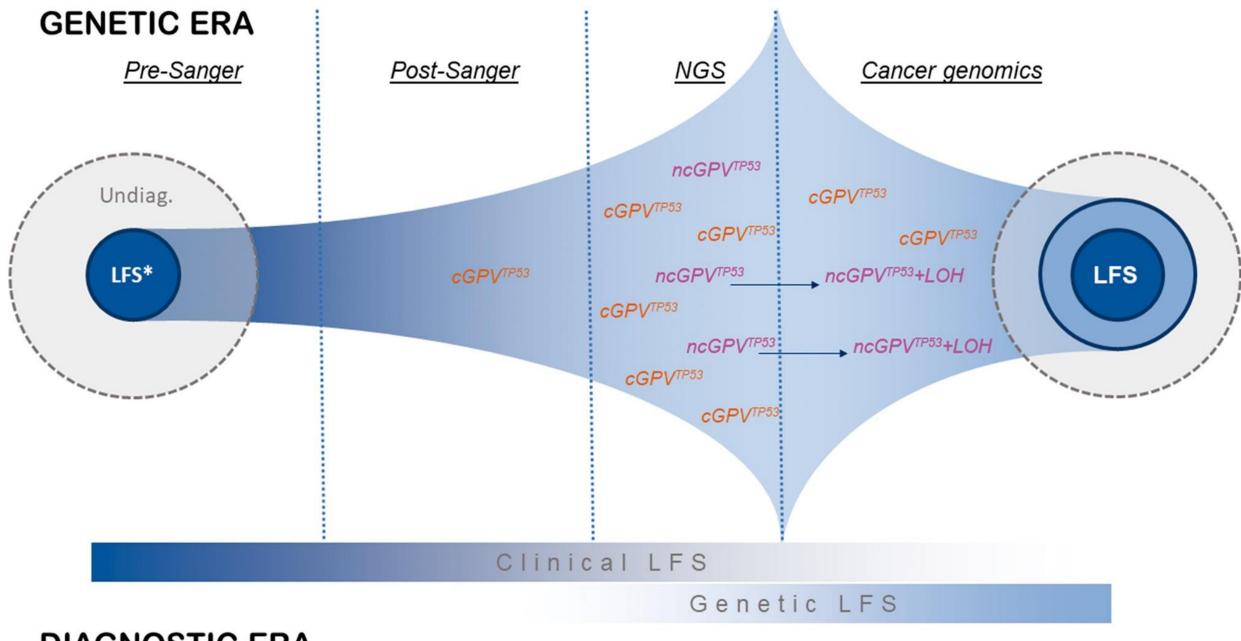
Massih Bahar PhD Cancer and Colorectal Genetics Familial and Hereditary Cancers Institute

Background

TP53 related cancer syndromes


Mutation \rightarrow Variant

Disease causing mutation \rightarrow Pathogenic/Likely Pathogenic Variant (PV) Variant of Unknown Significance \rightarrow VUS Genomic variant \rightarrow g/Germline variant


Genetic Contributors Breast Cancer

Gene/Mutation	Lifetime Risk of Breast Cancer (in Carriers)	Prevalence in Population	Contribution to All Breast Cancers
TP53	~49- 85 %	~1 in 4,500 (~0.022%)	~0.08%
BRCA1	~55-72%	~1 in 400 (~0.25%)	~5-10%
BRCA2	~45-69%	~1 in 300 (~0.33%)	~5-10%
CHEK2	~25-30%	~1 in 100 (~1%)	~1-2%
PALB2	~33-58%	~1 in 1,000 (~0.1%)	~0.5-1%
Other Genes (e.g., ATM, CDH1)	~15-40%	Variable (rarer than 1 in 1,000)	<1%

gPV in TP53 = Li-Fraumeni Syndrome

de Andrade KC, Frone MN, Wegman-Ostrosky T, Khincha PP, Kim J, Amadou A, et al. Variable population prevalence estimates of germline TP53 variants: a gnomAD-based analysis. Hum Mutat. 2019;40:97–105.

DIAGNOSTIC ERA

J Natl Cancer Inst, Volume 113, Issue 12, December 2021, Pages 1615–1617, https://doi.org/10.1093/jnci/djab118

TP53 germline genetic testing

TP53 related cancer syndromes

Modified Chompret Criteria

- 1.A person with a tumor belonging to the LFS spectrum (breast cancer, STS, osteosarcoma, CNS tumor, ACC) before the age of 46 AND at least one FDR/SDR with an LFS tumor (except breast cancer if the proband has breast cancer) before age 56 years or with multiple tumors OR
- 2.A person with multiple tumors (except multiple breast tumors) two of which belong to the LFS tumor spectrum and the first of which occurred before age 46 OR;
- 3.A person with ACC, choroid plexus carcinoma, or rhabdomyosarcoma of embryonal anaplastic subtype, irrespective of family history OR;
- 4.A person with breast cancer before 31 years of age

Chompret A, et al. J Med Genet 2001;38:43-47; Bougeard G, et al. J Clin Oncol 2015;33:2345-2352.

GENTURIS guideline for TP53 cancer syndromes

- Testing for disease-causing TP53 variants should be performed before starting treatment to avoid carriers undergoing radiotherapy and genotoxic chemotherapy and to priorities surgical treatments.
- Patients who develop a **second primary tumour**, within the radiotherapy field of a first core TP53 tumour which occurred before 46 years, should be tested for germline TP53 variants

Nuances of TP53 germline testing

Mosaicism

- CTC (e.g. ovarian cancer)
- clonal haematopoiesis
- Allogenic Hematopoetic Transplantation
- De novo mutation
- Hematologic Malignancies
- FDR testing
- Tumor Testing +TP53

LFS genetic testing and diagnosis

	Blood or Saliva (VAF)	Fibroblast (VAF) ^b	Tumor (VAF) ^b	Parent Testing ^c	Offspring Testing ^c	Management
Li Fraumeni Syndrome Spectrum – Inherited	Positive (40%–60%)	Positive (40%–60%)	Positive (0%–100%)	One parent positive	50% risk	LFS
Li Fraumeni Syndrome Spectrum – <i>de novo</i>	Positive (40%–60%)	Positive (40%–60%)	Positive (0%–100%)	Both parents negative	50% risk	LFS
Post-zygotic Mosaicism: Multi-Tissue A. Mosaic LFS	Positive (>1%–50%)	Positive or Negative (0%–50%)	Positive or Negative 0%–100%	Both parents negative	Negative or 50% risk (if gonadal mosaic)	LFS ^d
Post-Zygotic Mosaicism: Blood Only A. Clonal Hematopoiesis	Positive (>1%–100%)	Negative	Positive or Negative (VAF solid tumor < VAF blood)	Both parents negative	Negative	Hematologic workup and referral
B. Hematologic Neoplasm or Precursor Condition	Positive (>1%–100%)	Negative	Positive (>1%–100%)	Both parents negative	Negative	Hematologic workup and referral
Post-Zygotic Mosaicism: Tumor Only A. Somatic interference from tumor (ctDNA or circulating tumor cells in blood/saliva)	Positive (>1%–100%)	Negative	Positive (>1%–100%) (VAF solid tumor > VAF blood)	Both parents negative	Negative	Cancer treatment

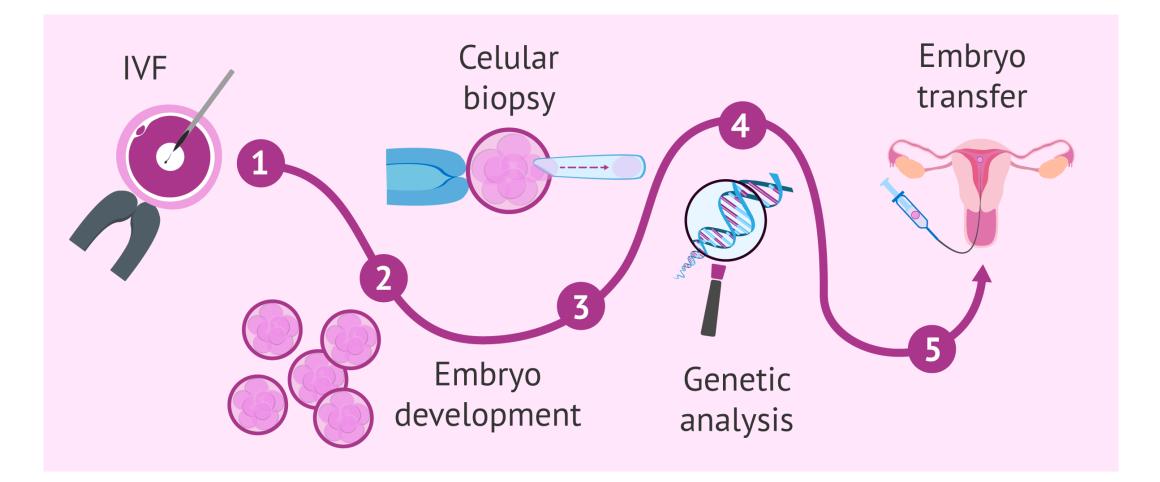
Genetic Testing Report For Whole Exome Sequencing (100x)

Single Case Analysis

Indication of Test: Invasive ductal carcinoma (ER+ PR+ HER2-) and positive family history of breast, gastric & thyroid cancers. Onset: 32Y

Positive: One Pathogenic Significance Variant in P53 Gene

Test Interpretation


- Gastric .Breast Cancer در ۳۲ ساله با تشخیص Breast Cancer در ۳۲ سالگی، همچنین سابقه مثبت Gastric .Breast Cancer در ۳۲ سالگی، همچنین سابقه مثبت Thyroid Cancer.
 - نتیجه این بررسی ژنتیکی به شرح زیر می باشد:
- ۱- بر اساس آنالیز انجام شده بر روی نتیجه توالی یابی و با تمرکز بر ژن های مطرح در Hereditary cancer. یک جهش احتمالا بیماری زا هتروزیگوت در ژن TP53 برای ایشان مشاهده شد.
 - ۲- 4 واریانت دیگر به عنوان جهش های ناقلیت بر ایشان گزارش گردید.
- طبق دستورالعمل های جاری، واریانت های با اثر نامشخص یا VUS و همچنین واریانت هایی که تاکنون در بیماران گزارش نشده اند را نمی توان مبنای مداخلات بالینی و تشخیص های پیش از تولد قرار داد لذا تایید این واریانت ها در افراد بیمار همچنین بررسی آن ها در دیگر افراد خانواده جهت تعیین دقیق بیماری زا بودن یا نبودن این واریانت ها، پیشنهاد می گردد.
- ★ واریانت های گزارش شده حاصل بررسی به روش WES بوده و با روش های مولکولی دیگری تایید نشده است لذا پیشنهاد می شود قبل از اقدام هرگونه مداخلات بالینی و تشخیص پیش از تولد در افراد بیمار مورد تائید قرار گیرد. در غیر این صورت دارای کاربرد درمانی و تشخیصی نمی باشند.
 - ا مشاوره ژنتیک توصیه می گردد.

Analysis and Interpretation

Variants of Strong Clinical Significance:

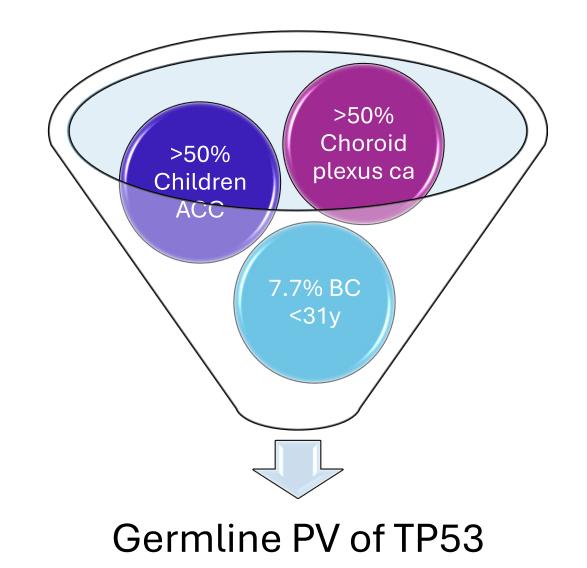
Gene	Variant	Туре	rs ID	ClinVar	ACMG	Disorder & OMIM
TP53	chr17:7578446 T>A*	Missense	rs2073377305	VUS	Likely	Li-Fraumeni syndrome (AD)
	NM_000546.6 Exon5	(Het)			Pathogenic	Bone marrow failure
	c.484A>T p.lle162Phe					syndrome 5 (AD)
					Glioma susceptibility 1 (AD)	
						Colorectal cancer (AD)
						Choroid plexus papilloma (Al
			Basal cell carcinoma 7 (AD)			
						Adrenocortical carcinoma,
						pediatric (AD)

Preimplantation Genetic Diagnosis

Li-Fraumeni Syndrome

TP53 related cancer syndromes

Penetrance


- Cancer risk initially calculated using information mainly from familial cases and was estimated to 73–100% by age 70, with risks close to 100% in women
- Why is the penetrance of germline disease-causing TP53 variants variable?
 - Dominant Negative effect (childhood tumors)
 - 'high cancer risk' and 'low cancer risk' alleles
 - Modifying factors
 - phenotypic expression in carriers of TP53 disease-causing variants is also dependent on environmental factors

core LFS cancers

- soft-tissue sarcomas (STS)
- Osteosarcomas
- adrenocortical carcinomas (ACC)
- central nervous system (CNS) tumours
- very early-onset female breast cancers, occurring before 31 years (no known elevated risk of male breast cancer)

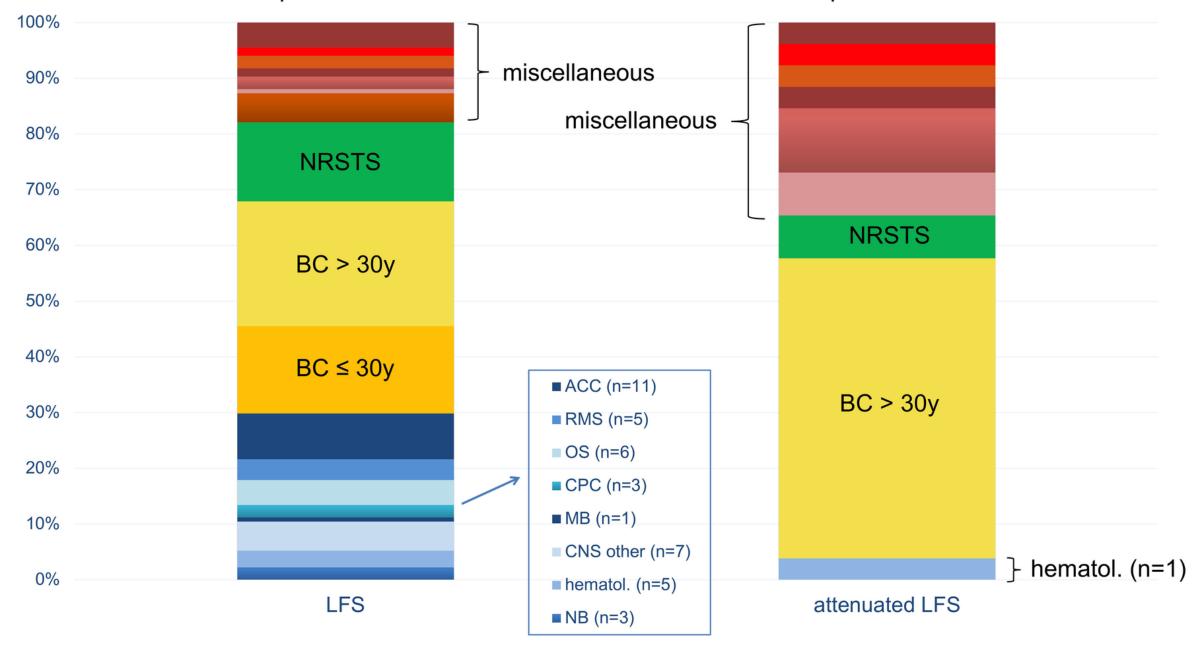
Regardless of familial history

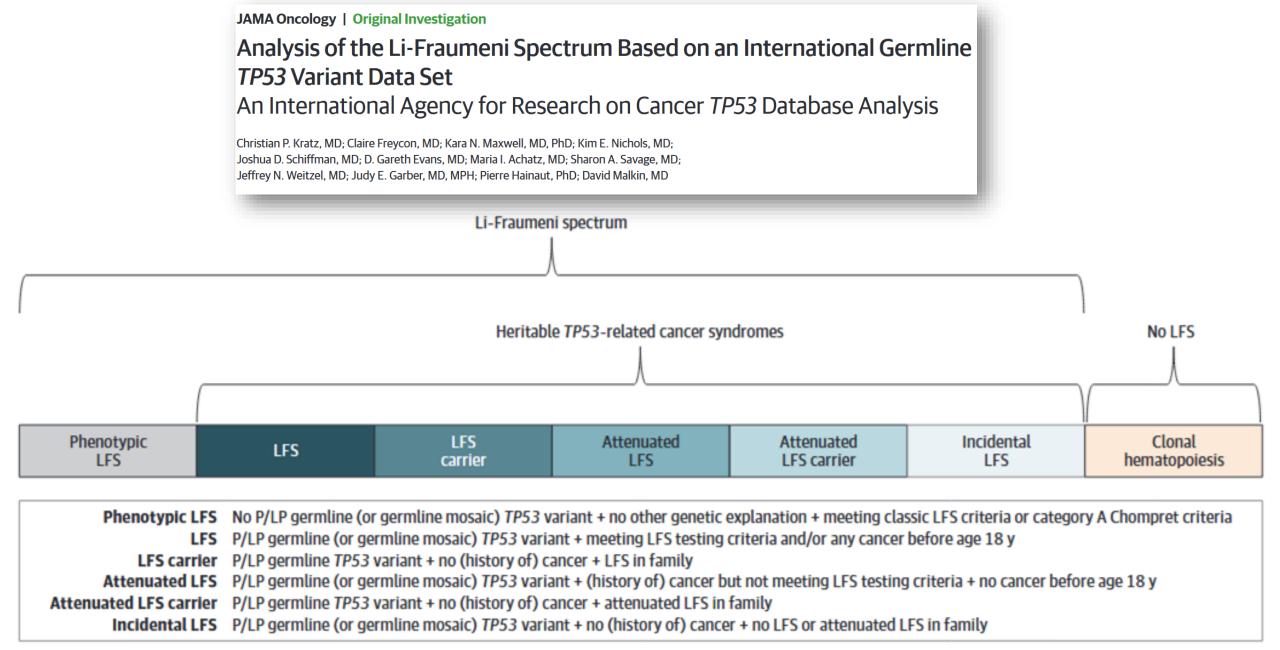
Second Primary Tumors in gTP53

- incidence of subsequent primary tumours, which may occur in more than 40%.
- consistent observations of sequential development of multiple tumours after treatment by chemo- or radiotherapy of a first tumour and the development of tumours within the radiotherapy field

de Andrade KC, Frone MN, Wegman-Ostrosky T, Khincha PP, Kim J, Amadou A, et al. Variable population prevalence estimates of germline TP53 variants: a gnomAD-based analysis. Hum Mutat. 2019;40:97–105.

Attenuated Li-Fraumeni Syndrome

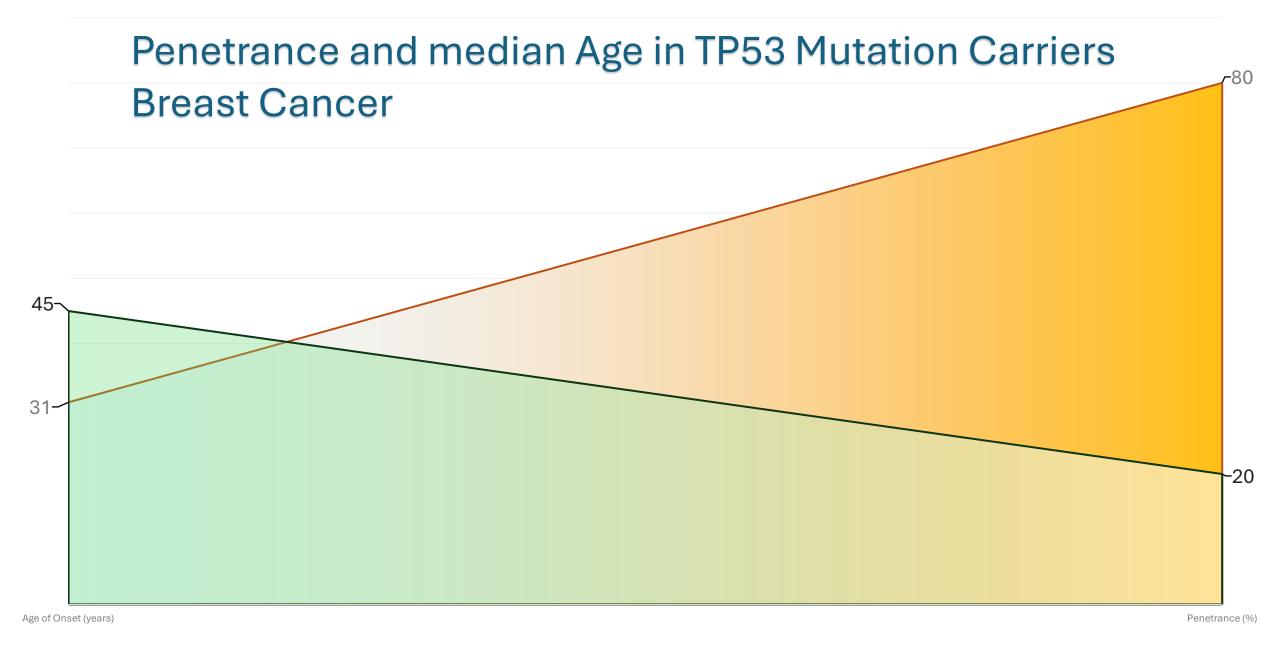

TP53 related cancer syndromes


Terminology

- heritable TP53-related cancer (hTP53rc) syndrome
- attenuated LFS
- Li-Fraumeni-Like Syndrome (LFLS)

neoplasms: n = 134

neoplasms: n = 26



The classification has currently no immediate implications on cancer surveillance protocols because further risk analyses are required

Attenuated LFS (Breast Cancer >31y)

- patients who did not meet clinical LFS criteria, may primarily reflect the fact that carriers in this group develop cancers that are associated with the adult phase of LFS.
- Variants in this group may tend to be characterized by a reduced penetrance, leading to an older age of occurrence of cancers of the LFS spectrum.
- carriers who <u>did not meet LFS genetic testing criteria</u> had a higher proportion of breast and other cancers, 45% of them occurring after age 45 years
- Notably, there were more early adrenal, brain, connective tissue, and bone tumors in patients who met LFS genetic testing criteria

Li-Fraumeni Syndrome

GENTURIS guideline for TP53 cancer syndromes

 Any patient presenting with isolated breast cancer and not fulfilling the 'Chompret Criteria', in whom a diseasecausing TP53 variant has been identified, should be referred to an expert multidisciplinary team for discussion

ییام های مهم این بحث

- 1. تا جایی که امکان به جای بررسی BRCA1/2 از «پنل ژنهای سرطان پستان» استفاده شود. خصوصاً زمانی که سن ابتلا پایین است. حتی المقدور قبل از درمان مدیکال و پرتو
- 2. همه TP53ها Classic Li-Fraumeni نيستند، بيشتر آنها Attenuated LFS اند.
 - 3. در تصمیم گیری کنترااندیکاسیون درمان مدیکال و رادیوتراپی فرد دارای جهش TP53 به attenuated یا classic بودن Li Fraumeni توجه شود.
 - 4. در آزمایش TP53 باید تمامی جوانب مهم را در نظر گرفت.
 - 5. بارداری با LFS بهتر است به صورت PGD باشد.

whole gene del 🔎